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The Evolution of a Gas in a Radiation Field from a
Kinetic Point of View

A. Nouri'
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An existence theorem is derived for a system of kinetic equations describing the
evolution of a gas in a radiation field from a kinetic point of view. The geome-
trical setting is the slab and given indata. The photons ingoing distribution
functions are Dirac measures.
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INTRODUCTION

The evolution of a gas interacting with a radiation field is a subject of
interest in astrophysics and the study of laboratory plasmas. The main
models used so far are the radiative transfer equation for the photons
distribution function, coupled with fluid equations describing the evolution
of the gas."® However, many astrophysical and laboratory plasmas show
deviations from local thermodynamic equilibrium, which also requires a
kinetic setting for the gas. Kinetic models have been derived in refs. 4 and 5.
In the frame of radiation gas dynamics, Burgers® provides a simplified
kinetic model for the interaction of a gas with a radiation field. Gas mole-
cules with only one excited energy level are considered, together with
photons at a single frequency. This is certainly a simplifying assumption,
but in many cases (refs. 2 and 7) it is a good approximation. This model is
improved in ref. 8 by using the genuine Boltzmann collision operators
instead of the BGK collision operators from ref. 6 in the equations for the
gas molecules. A remarkable feature of such a model is that Planck’s law of
radiation is recovered selfconsistently, under thermodynamical equilibrium
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conditions. Moreover, a H-theorem is formally obtained. In this paper,
a theorem of existence of a solution to this kinetic model is derived in the
slab, when only elastic collisions within gas molecules are taken into
account, for given indata on the boundary. Making use of the emission of
the photons in beams perpendicular to the walls, a supplementary simplifi-
cation is introduced in the model. On the mathematical side, what is new
compared to the DiPerna and Lions result for the Boltzmann equation is
the coupling between gas molecules and photons. The first ones are fer-
mions, which allows L' renormalized solutions. The second ones are
bosons, which only allows a measure setting for the photons distribution
function. Theorem 1.1 states the existence of photons distribution functions
that are measures in the velocity variable.

1. THE MODEL AND THE MAIN RESULT

Let a gas of material particles of mass m endowed with only two
internal energy levels E;, and E,, with E;, < E,. Denote by 4, and A4, par-
ticles 4 at the fundamental level 1 and the excited level 2 respectively, and
by f(¢, x, v) and g(¢, x, v) their distribution functions. The time variable ¢
belongs to a given interval [0, 7], the space variable x to the slab [0, 1]
and the velocity variable v to R®. A radiation field of photons p at a fixed
frequency v=4E, with 4E = E,—E, and h the Planck constant, interacts
with the gas. The gas particles are assumed to interact elastically among
themselves. The interactions between the gas molecules and the photons

are, classically, of three types,

Absorption, A;+p— A,,

Spontaneous emission, A, > A4, +p,

Stimulated emission, A,+p— A4, +2p.
Let ¢Q, where Q € S? and c is the speed of the light, be the photon veloci-
ties, 0 their angle with the x-axis and I(z, x, £) the photons distribution
function. Denote by I(¢, x, Q) = chvi(z, x, 22) the specific intensity. Let f,,,

oy, and f,; be the Einstein coefficients. Following refs. 5 and 6, the evolu-
tionary equation for (¢, x, 2) is given by

%I,+cos oI, =hv[(oc21 +ﬁ211)fgdv—/3121ffdu]. (1.1)

Since f;, = fB,;, the subscripts of the Einstein coefficients can be dropped.
Denote by ¢ the first component of the velocity vector v. The Boltzmann
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equations for the two particle species 4; and 4, can be classically written
as

fi+&fs =gf(oc+ﬂl)d0—/3ff1dg
]SOt oS fu—f 1) dvw do

+JR3 - S(v, vy, 0)(f'g%— fgx) dvy do, (1.2)

where S is a given collision kernel,

' =fx0),  fa=fEx0), [fo=fx00),

vV =v—(v—1y, ®) O, v =0+ (v—04, ®) O,

and

g +ég, = —gf(a+ﬁ1) d9+ﬂfj1de
+[ S, v, )8~ g84) do deo

+[ S, ve, )48~ fug) o dov. (1.3)

The physical conditions considered here are characterized by the following
inequalities,

kT <me, AE<c |l (1.4)
T

where kj is the Boltzmann constant and 7 the temperature of the gas. The
first inequality implies that the relativistic effects can be neglected. Conse-
quently, the velocities of the gas molecules do not exceed in modulus ¢, for
some positive number € smaller than 1. Hence, the collision kernels S and
S’ are assumed to vanish for |v| or |v,| or |v'| or |v}| bigger than 5c. More-
over, S and S’ are bounded and measurable positive functions having the
usual symmetries of collision kernels. A further restriction on S is that

S(lg ”‘2’ ‘l"), (resp. Sl(g,’ ”*é’,al’)) is assumed to be bounded for small |£—¢&,|, (resp.
T ok 6%

small [£'—¢&,]). The second inequality in (1.4) guarantees that the photon
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momentum is much smaller than the mean thermal momentum of the gas,
so that any exchange of momentum between photons and molecules can be
neglected. Initial conditions f;, g; and I, are given for every distribution
function,

f(09 X, U) = f;‘(x’ U)’ g(O, X, U) = gi(xa U), 1(07 X, 0) = Ii(xa 0) (15)

The boundary conditions for the gas particles are given indata, i.e.,

f(ts Oa U)=f0(t9 U), é>09 f(t, 1,U)=f1(t, U)a é<09

(1.6)
g(ta Oa U)=g0(t9 U)’ £>09 g(ta I’U)=g1(z5 U), £<O
The photons are emitted at the boundaries in beams perpendicular to the
walls, i.e.,

1(t,0,0)=1,0y_,, cosf>0 1(t,1,0)=1,6,_,, cos8<0, (1.7)

where I, and I, are nonnegative constants. Because of this strong light
source, directed along the x-axis, there is much higher intensity in this
direction. Making use if this, it is assumed that the stimulated emission for
|cos 0| < € is negligible compared to the stimulated emission in the other
directions. Only stimulated emission and not also spontaneous emission or
absorption are negligible for |cos 6| <€, since a supplementary photon is
emitted from a stimulated emission with the help of a primary photon
hitting a molecule of gas. This is not required for spontaneous emission
nor absorption. And so, instead of (1.1)-(1.3), the distribution functions
(f, g, I) is assumed to satisfy

%I,+cos01x=hv[(a+ﬂ1)fg(u)du—ﬁlff(v)du], lcos O] > ¢, (1.8)
%I,+cos I, = hv [ajg(v) du—/ﬂff(u) a’v], |cos 6] <, (1.9)

f,+éfx=<fad0+ ﬁ1d0>g—ﬂfj1de
+O(f, f)+0:(f, 8), (1.10)

g,+fgx=—<'[ocdt9+l ’ ﬂ1d0>g+ﬁfj1d0

+0(8,8)+0:(f. 8)s (L.1D)

|cos 0] > €
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where

O(f. )=0*(f, )= (f. ),
O (f. )W) =],  Sf'fdv, do,

Q (/.= [,  Sfsdv, do,
Q(f.9W) =] | S(f'gh—fg.)do. do,

0:(f. 9= | | S(fig'~fug) dvs do.

The formal passage in (1.8)—(1.11) when € — 0 results in model (1.1)—(1.3),
since then (1.9) disappears and (1.8) becomes (1.1). For the sake of sim-
plicity, the terms Q, and Q, will be skipped in the rest of the paper. Using
that 4, and A4, are mechanically the same, the following existence theorem
would also hold with them, with minor adaptations of the proof. More-
over, the constants Av, « and f do not play any role on the mathematical
level. It is why they are taken as 1 in the rest of the paper.

Definition 1.1. (f, g I) is called a solution to (1.5)—(1.11) in
iterated integral form if

(f, & DeC([0,T], L'((0, 1) x¥)) x C.([0,T1, L'((0, 1) x V"))
x L'((0,T) x (0, 1), M[0, 2%]),

I satisfies (1.5), (1.7)(1.9) in weak form with test functions in
C'([0,T]x[0,1]x[0,2n]), compactly supported in [0, 7T[ x[0,1]x
[0,27], O*(f, f)(-, x,v) and Q*(g, g)(-, x, v) belong to L'(0, T') for a.a.
(x,v)e(0,1)xV,and fora.a.re (0,T),

[ (f*@)(t, x, v) dx dv
(x,0); (x+12£,0v) € (0, 1) xV

X
- <(f”¢)<0v ——,x,v)
(%, 0); (x+1&, ) € (0, 1) xV, >0 &

t a(p %
+~L>O J‘Ov—g <f#a+<g<2n+ |cos€|>eId0>_fjld9+Q(f’f)> (ﬂ>

x (s, x, v) ds> dx dv
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(f“¢)(0V1_Tx,x,v>

t 0 %
+~L<O J‘Ovl;;c <f#a_<~:+<g<2n+ |cos€|>eId0>_fjld0+Q(f’f)> (P>

X (s, x, v) ds> dx dv,

J‘(x, v); (x+1&,0) e (0, 1)xV, <0 <

[ (), x, v) dx dv
(x,0); (x+2&,0) € (0, ) xV

X
- (e (ov-F.x0)
(x, 0); (x+2&,0) € (0, )XV, &> 0 ¢

ol (e (e, 10 ) [ 10060 ) v)

x (s, x, v) ds> dx dv

1—
+] (wn(ovi o)
(x,0); (x+2£,0) € (0, 1) xV,E<0 f

t 0 "
+L<0J.OVI_TX <g#%+<_g<2n+ |cosH|>eId0>+f.[Id0+Q(g’ g)> l//>

x (s, x, v) ds> dx dv,

for any test functions ¢ and ¥ such that ¢(-, x, v) € C'([0, T]), ¥(-, x, v)
e CY([0,T]) for a.a. (x,v) e (0,1)xV, and (@, ¥) e (C'([0,T]; L*((0, 1)
xV)))>2

Here, av b (resp. a Ab) denotes the maximum (resp. the minimum) of a
and b,V := {ve R’ |v| <{c} and M[0, 2] is the set of bounded measures in
the 6 variable belonging to [0, 2z]. Moreover, f*(z, x, v) := f(t, x+ 1, v)
denotes the value of f along the characteristics (¢, x+t&, v). Denote by
|f]: (x, v) :=supess, ., f*(s, x, v). For any distribution function f, denote
by the corresponding capital letter F its density function defined by
F(t,x):= | f(z, x,v) dv.

Remarks. For ¢>0, (f#p)(0v —%, x,v) is either f;(x, v) ¢(0, x, v)
or fo(—g, v) (p(—’—é‘, x,v), and for ¢<0, (f“(p)(Ovl‘?", x,v) is either
fi(x,v) (0, x, v) or f, (I‘T", v) (p(l‘T", x, v), which are known values.
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As shown in ref. 9, being a solution to (1.5)—(1.11) in iterated integral
form is equivalent to be a solution to (1.5)—(1.11) in mild form.
The main result of this paper is the following.

Theorem 1.1. Let 7 > 0 be given. Assume that f;, g;, I, fo, f1, &
and g, are non negative functions satisfying

[ [0 +1n £)+g(1+Ing)] dx dv
+[) [, c0+mfo) fuls.oydsavt [ [ E(+ingo) go(o. ) dsd
+[) [, 1A+ 1) fils o) dsdo
+LT L<O €] (1+1n g,) g (s, v) dsdu+j1i dx df

+ sup j
(t,x) € (0,T)x(0,1) lcosf]>€,0<x—tccosf <1

I(x—tccosB,0)dl<c;. (1.12)

Then there is a solution ( f, g, I) in iterated integral form of (1.5)—(1.11).

Here, and in the following, ¢, denotes constants only depending on the
initial data f;, g;, I;, the given indata f;, f;, g, and g;, and the given con-
stants I, and ;.

A priori bounds. Solutions (f,g,I) to (1.5)(1.11) satisfy the
following a priori bounds, describing the conservation of energy and the
decrease of entropy with time. Multiplying (1.10) by v?+E,, (1.11) by
v>+E,, integrating the sum on (0,7)x(0,1)xV, adding it to (1.8)
integrated on (0, 7) % (0, 1) x {|cos ] > €}, then to (1.9) integrated on
(0, ) x (0, 1) x {|cos 0] <€}, and using that E, — E, = hv, formally leads to
the conservation of energy

J [(V*+E) f(t, x,v)+ W+ E,) g(t, x,v)] dx dv+%f](t, x, 0) dx db
+L L«) €] [(W*+E,) f+(v*+E,) g](s, 0, v) dv ds

+L L CL@PHE) f+(0*+Ey) g)(s, 1, v) dv ds
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= [[@*+E) fi(x 0)+ 02+ E) gi(x, v)] dx dv+%flf(x, 0) dx do
+f0t L . EL(W*+E) fo+(W*+E,) g,]1(s, v) dv ds

[ L@ E) i+ 04 E) @) 0) dods+ (o + 1) 1. (1L13)

For any set Y, denote by y, the characteristic function of Y. Multiplying
(1.10), (1.11), (1.8) and (1.9) by In f, In g, Xjose > lnﬁ and Y5 <e In 1
respectively, integrating the two first resulting equations on (0, ¢)x
(0, 1)xV, the two last ones on (0,¢)x(0,1)x(0,2n) and adding them,
formally leads to the entropy inequality

f(fln f+ghng)t, x,v)dx dv+%f (IInI-1I)t, x,0)dxdo

|cos O] <€
+[[ &S f+ging)s 1,v)dsdo
0 JE>0
+['[ 18 f+ging)s,0,0)dsdo
0 J¢<0
1 rt
+—jf cos (I In I —(1+1) In(1+1))(s, 1, ) dx df
C J0 Jeosh>¢
1
4o jf lcos 8] (In I—(1+1) In(1+1))(s, 0, ) dx d6
C J0 Jeosf< —e
1
4 j’f cos O(I In I—1I)(s, 1, 8) dO ds
C JO JcosOe(0,¢€)

1 r¢
+—j f lcos 8] (I In I —I)(s, 0, §) df ds
C JO0 Jcosfe(—¢, 0)

+e(f’ f)+e(g’ g)+D1(f9 1 I)+D2(f9 8 I)

1
< [(1+1) In(1+1)—I In I(t, x, 0) dx d6

C Jlcos O] >¢

+[ (fin £+ In g)(x, v) dx dv



Evolution of a Gas in a Radiation Field 597

+1 (LInI,—(1+1) In(1+1))(x, 0) dx do

C Jcosb|>€

+1j (I In I, —I)(x, 0) dx df
C Jcos | <e

+ ([ &soin fo+gon go)s, v) dv
0 >0

#] KIS o) o) do ).

Here, [(fInf+glng)(t,x,v)dxdv and :{[(1+1)In(1+I)—IInT]x
(¢, x, 0) dx dO are the entropies at time ¢ of the gas molecules and the light
respectively. Moreover, e( f, f), e(g, g), Di(f, g, I) and D,(f, g, I) are the
nonnegative entropy production terms defined by

—[scr e 11
ef. )= SU famf T "7

*

ds dx dv dv, do,

Di(f,g 1) 1=£cosgl>e A+ g—1If) ln%’dsdx dv do,
Dy(f.g. 1) :=j|mal<e (g—1If) 1n%dsdx dv db.

Then,
(T, A L ode] | Celngl 1, 0)do )ds
0 \Jeso, <t E>0,g<1

([, A GO dor[ | gl (0.0 ds )ds
0 \Je<o, r<1 £<0,g<1

<ce !,
since the volume of integration is bounded. Moreover,

1 rt
-j f cos O |IInI—1I|(s,1,0)dsdd
C J0 JcosOe(0,e),I<e

1 rt
+—f j lcos 0] |1 In I—1| (s, 0, 0) ds d < c.
C JO JeosOe(—€,0),I<e
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Then, for some ¢ >0 and I, > 0,

I+ In(1+I)—IInI—cI <0, I>1

c*

Hence,
j [(1+1)In(1+I)—1IInI](t, x, 6) dx d6
|cos 0] > €

<e¢ j I(t,x, 0) dx d0+c,[(1+ L) In(1+ L)~ L In L] <c;,

I>1,

by (1.13). Hence

f(flnf—%glng)(t,x, v)dxdv+f IlnI(t, x,0) <c;. (1.14)

|cos 6| <€

From (1.13)—(1.14), it classically holds that
[ L+t D +g(1+in g1, x, v) dx dv

+j1(z, x, 0) dxd0+f Inl|(tx0) <c, (1.15)

|cos ] <e

Sketch of the Proof of Theorem 1.1. Approximations that are
bounded in the time and space variables are first derived in Section 2.
Mass, energy and entropy bounds of the type of the previous a priori
bounds are stated for these approximations. They provide L' weak com-
pactness for the gas distribution functions, together with compactness in
the weak * topology of measures for the photons distribution function.
This is not sufficient neither to pass to the limit in the nonlinear terms, nor
to be in the frame of application of the averaging lemma for the gas distri-
bution functions. Some supplementary work is also required in order
to take into account the difference of characteristics for the gas, i.c.,
(¢, x+t&, v) from characteristics for photons, i.e., (¢, x+ct cos 8, 8). This is
done in Lemma 2.2 and is crucial for the whole proof. It provides weak
L'((0,T) % (0, 1) x {|cos 8] < €}) compactness of a subsequence of photons
distribution approximations, as well as a frame of application of the
averaging lemma for the gas distribution approximations. The passage to
the limit is finally performed in Section 3, in the frame of the iterated
integral formulation of solutions to the problem.
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Remark. When explicitly expressing I from (1.7)—(1.9), the Dirac
measure d,_, is applied to the function

eli-—= (G=F)(s, x+(s—1) ccos ) ds
b

ccos 0

which is continuous at § =0. (The term ¢ cos § means the product of the
speed of light ¢ by cos 6). Indeed, for |[cos §| >e and veV, |c cos 0 —¢| >5¢
and

. (G=F)(s,x+(s—1t)ccosO)ds

ccos §

_ g y—x+tccosl d dv
LL)M(g f)< ccos@—¢ P ylccosﬁ—él’

where

L _y—x+tccosb X
Dg,,,.—{ye(o,l), ccosf—¢& E<t ccos@’t>}'

This function is continuous at § = 0, by the continuity in time of f# and g#
proven in Lemma 2.4 and the bounds

j supess f*(t,x,v)dxdv<c,; and I supess g¥(t, x, v) dx dv <c;,

t<T t<T

proven in Lemma 2.2. Analogously, the Dirac measure d,_, can be applied
to the function

e5:+ 1=x (G—F)(s, x+(s—1) ccos f) ds’

ccos

which is continuous at § = 7.

2. APPROXIMATIONS

Let n be a fixed integer bigger than 2. In this section, a solution
(f,8 D eC([0,T], L*((0, 1) x¥V)) x C.([0, T, L*((0, 1) x V"))

x L*((0,T)x(0,1), M[O0, 2xn])
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to the following system will be determined,

fi+éfi=1 (27z+ Ide)—ijzde
|cos 0] > € 1+£
+fS<1{rf’1{r*f*_ 11 )dv*dw @.1)
S
— 2 1d0 \+—— (140
gt+ig =1 ( 2 >+1+£f
g
+f < +g1+g* gl+g*>dv*da), 2.2)
1 g
;1,+cos01x=(1+1)j1+5 lcos O] >, (2.3)
%I,+cos€1x=flié, Ifli_i_fdv, |cos 0] <€, 2.4

together with the initial conditions

fQ0, x,v) = f,An, 2(0, x,v) =g; An, (2.5
10, x,0)=I, AR, (2.6)

and the boundary conditions

f(t,0,v)= fo(t,v)An, £>0, f(@t, 1,v)=fi(t,v)An, £<O0,

2.7)

g(t’ 0: U)=g0(l’ U)/\I’l, é>09 g(ts 1,U)=g1(t, U)/\n, é<0’ (

1(¢,0,0) =1,0,_,, cos0>0, I(t,1,0)=10,_,, cos 6 <0.
2.8)

Let p > n be given. Let (7, g/, I'); . be defined by f°=g°=0,1°=0and

f]+1
1+%

+j <f] fj/ _fit Wi >dv*dco, 2.9)
1+ 1+ 1+2

f{“+éf§“=1g <27r+| ) Ifd0> jlfde
+ cos | > €
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j+1

gt gl =2 j<2n+ Ifd0> jp do
1+g; |cos 8] > € 1_|_

+f ( —gf+1 )dv*d(u (2.10)
1+g 1+g* 1+g*
1
1!+1+cos¢911+1—(1+11+1)j g dv— 11+1j i _dv, |cos 0] > e,
1+5 1+% @.11)

1 j+1 j+1 1 f
S pcos O = [ 5 If+f du, |cos 6] <, (2.12)
C

1+

together with the initial conditions (2.5)—(2.6) and the boundary conditions
(2.7)—(2.8). The sequence ( f7, g’, jl 7df) can be exphcltly deﬁned is non
negative as well as I’, and bounded by (n’e™, ne" ) for n large
enough. Hence, . And

so, by the averaglng lemma 10 (j uin dv) and analogously (f du) are

strongly compact in L'. Consequently, the passage to the "limit in
(2.9)(2.12) is possible, and (f", g", I") :=1lim;, ., (f7, g/, I') satisfies the
system (2.1)—(2.8).

Lemma 2.1. The solution ( f”, g", I") to (2.1)-(2.8) satisfies
f Lf"(n /" + 1) +¢g"(|ln g"|+ 1) 1(2, x, v) dx dv
+, I, €0 14D+ &7 g1+ 1)Gs, 1, 0) ds do

+f! J,_, 10 £+ )+ g1+ 1), 0,0) ds do

+ j I"(t, x, 0) dx d + j I"|In I"| (¢, x, 0) dx d

|cos O] <€
+e(f, fM+e(g", g"
+ﬁ1(fn’gn’1n)+ﬁ2(fn’gn’In)<c’ tE(O, T): (213)
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where
5 o o f S
e(f’f)'_js(1+f'1+ﬂ_1+f1+“
ST
1+L1+2
xIn ———"ds dx dv dv, dow,
S S ’
1+L14%
(1+1)—=+
5 f 1+§
Dl(f,g,l):=flwsgl>e[(1+I)1+g—11+f In 7 ds dx dv df,
n n I
1+2
g
~ g f 1+%
Dz(f,g,l):=jlmel<é[1+g—11+f}1n 7 ds dx dv db.
n n [
141

Proof of Lemma 2.1. Multiplying (2.1) by E,, (2.2) by E,, integrat-
ing the sum over (0,¢)x(0,1)xV, adding it to (2.3) integrated over
(0, £) x (0, 1) x {|cos 6] > €}, then to (2.4) integrated over (0, ¢)x (0, 1) x
{|cos 0] <€}, and using that E, — E; = hv = 1 leads to

Jrmegn x v dx dH%fl"(t, x, 0) dx df
+L LO <(f"+g"(s, 1, v) ds dv

+[] 1A+ gns,0,0) ds do
0 Jé<0

+f t LOSM cos 0I'(s, 1, 0) df ds+ j j |cos 8] I"(s, 0, 6) d6 ds

cosf <0

<¢. (2.14)

Moreover, multiplying (2.1) by ln f,,, (2.2) by ln £ i (23) by In 77 + i

(2.4) by In(Z"), integrating the two ﬁrst over (0, 1) x (0 1) x V', the third on
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(0, £) x (0, 1) x {|cos 6] > €}, the last on (0, 7) x (0, 1) x {|cos 6] < €}, adding

them and using (2.18) and (1.13), leads to

(i) (1+7)

+g"lng”—n< >1n<1+g—>](t,x, v) dx dv
n

jLO [flnf n(1+nn> <

+g"lng”—n< > n<1+‘%>}(& 1,v) ds dv
+jj |5|[f1nf— <1+nn <1+ >

+g”lng”—n<1+g )ln<1+g— }(s 0,v)dsdv
n n

+1 I"In I"(t, x, 0) dx d

C Jlcosf| <e

+e(f" fM+e(g", g +Di(f" " IN+D(f" 8", 1)

™)

<ciJSf”<cj.

"’ A
<ci-"_ n n f n + n
J‘l-*—ff"/n<1 n(1+f) ) +f7 J\1+ir”n<1
Then,
fm? /"
<t n(+DA+H 1+ 5
Analogously,
(g"’ g"
st DA+ 1+
Then,

9 t t
—tlnt—n(14+-)In(14+-)=0, n>100, te (100, rn%).
10 n n
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Adding (2.1) and (2.2) leads to f"+g"€[0,n°], hence f"e[0,nr’],
g" € [0, n*], for n large enough. Hence,

1
o] (I fr g gt x 0) dx do

+1 ftf E(f"In f"+g"Ing")(s, 1, v) ds d

10 Jo Jeso g Ing’)(s, 1, v)asav

1
+F) Jo L<0 I€] (/" In f"+g"In g")(s, 0, v) ds dv

1
+- I"In1"(¢t, x, 0) dx df

C Jicos O <e
+e(f", [ +e(g" g+ DS g IN+Dy( [, 8" I <.

Lemma 2.2.

j supess (f"+g")* (¢, x,v) dx dv <c;. (2.15)

t<T

Proof of Lemma 2.2. The proof follows the lines of ref. 11. By
Lemma 2.1, for 6 > 0,

sup f f"(t, x,v)dxdv, sup g"(t, x, v) dx dv,

M| <o *M M|<o M

f: <L 0 ¢f*o, 1, v) d”"‘L . 1] f"(a, 0, v) dv)da and

f: <L>0 ég"(a, 1,0) dv+L<0 €] g(5, 0, v) dv)da,

are o(1) in ¢, uniformly with respect to n. Choose d, > 0 such that

sup fM (f"+g"(t, x,v)dxdv< and

|M]| <o

25¢,’

j <J‘ ((f, +g )(09 1, U) dl) J‘ |§| (f”+g”)(o.’ O’ U) dU g 2 ,
¢>0 ¢<0 !5:.
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) S(é v*é T’) Notice that J, only depends on the initial

data and the given indata. Let 7" = min{T, J,, —<}. Let us prove that

where ¢, = 27” sup,, o

j supess (f"+g")* (¢, x,v) dxdv<c;. 2.17)

t<T'

Since 7" only depends on 7, the initial data and the given indata, it will
then be possible to extend the result to [77,27'],..., [(k—1)T', kT"],
[KT', T], where k = E(%), i.e., to [0, T]. Adding Egs. (2.1) and (2.2) leads
to

: frofx [
n n\# _ _ 4n
(fr+g) _JS<1+f"’1+fﬁ' 7L o o

nr

gx
+ —g" >dv do.
I < 14+ 1+g* 145/

Since f" and g" are bounded on (0,T)x(0,1)x¥V by n*® for n large
enough, let 7, be the largest time smaller than 7" such that

sup {sup L j (f"+8")* (s, x+5(E— &), vy) |E—E&,| v, do dis,

xe©0,1) Le>o

1
sup L f(f +8M)¥ (5, x+5(E—E,), vs) |E— & do, dcods}gz—_

¢<0 Co

(2.18)
Then, for {>0and te (—3v0,T, /\I_TX)
(f"+g"*(t, x,v)

< (f"+g")<—’—gv0, x, v)
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<(f"+g")*(TnA1%x,x,u>

+f_TOT [ STr7s, x,0) £75s, x+s(E=E0), 02)
é\/
+8"¥(s, x, ) (s, x+5(E— &), v4) ] oy doo.

Hence, for & > 0,

supess  (f"+g"*(t,x,v)

-
te(—%vO,T},/\?x)

1_
<(f"+g")*‘<TnA—x,x,v>+ supess (/™48 (1, x, )

¢ te(—%vO,T,m%)
Tn,\l;"
X[ (g x4 s(E— 8, ) oy do s,
-

By the definition of 7,, it holds that, for £ > 0,

supess  (f"+g"*(t, x,v) <2(f"+g")* <7}, /\I_Tx, X, v). (2.19)

te (7%v0, 7;,/\1;;)
Analogously, for £ <0,

supess (7 +g") (&, x, 0) <2 f'+g")* (T,,A X

é’ x’
te("T"vo,TnA—?

v>. (2.20)

Consider (x,v) such that £>0. By the change of variables s— y=
x+5(8—&),

T,AE

[ g (s xts(E =&, m) 16=&il dvs doo ds

s

< supess  (f"+g")* (g, y, v,) dy dvy,
(o) ed o'e(fgvo,ﬂ,/\%)

404

where 4 is a subset of (0, 1) x V' of measure smaller than "T”;

ting 4 into

< Jy. Split-
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{(y: ) €A 8 >0,T, < lgy}u{(J’a v,) €A, 8 >0,T, > lé_y}
* *

U{(yav*)EAaé*<071—;;< _%}U{(yav*)eAaé*<07];z> _él}a

* *

and using (2.19)—(2.20) implies that

[ supess  (f"+g")* (o, 7, vs) dy do
(

y.vs)ed ne(ngO,T;,/\l;{X)

<2[ (/48" (T30 dy do,

+2 (f"+g")*(

46,>0,T, >

é* ,y,U*>d.VdU*

+2 (f +g")“< FRE w)dydv*

4,8, <0,T,> —+

<2 (/48 (T, 30 dy do,

12 e +g")<

e

, 1, dy dv

+2 (f"+ ")< 5 v*>dydv*

A§*<0T>—f

T,
=2[ (f"+&)F (T, yv)dydva+2[ " [ &(f"+g")(z 1, 0,) do, de
4 0 Je,>o0

T,
+2j0 L*<O Ié*l (f +g )(T, 0, U*) dv, dfgfco’

by (2 16). And so, the right-hand side in (2.18) can be improved by replac-
ing ; by 2. This implies that 7, =7". Consequently, the inequalities
(2.19)-(2. 20) hold for 7, = T'. This ends the proof of Lemma 2.2.

Lemma 2.3. The sequence (I") is weakly compact in L'((0,T) x
(0, 1)) x {|cos 8] <€}. The sequences (F"), (G"), and (o> 1" d0) are
strongly compact in L'((0, T') x (0, 1)). Moreover, (jlcos o=c 1"(2, x, 0) dO) is
bounded in L*((0, T') x (0, 1)).
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By Lemma 2.1, (f"), (g") and (I") are weakly compact in L'((0,T)
x (0, 1)xV), L'((0,T)x(0,1)xV), and L'((0,T)x (0, 1) x {|cos 8] <€})
respectively. Moreover,

f I"(t, x, 0) do
|cos 0] > €

n

%
(s, x—tc cos 0+ s(c cos 0—¢&), v)

:cJ -
(¥ xV)x {|cos 0] > €} 1_|_@’7

n n
xgcjij(ljigl— 1‘{ﬂ)#(zr,x—tc::os6’+t7(ccos€—é*),v*)du,,‘ do ds do dv
n n

I(x—tccos @, 0)

J‘|cos 6| >e, x—tccosBe(0,1)

to(g _ S _
XECIOI(1+L" l+ﬂ)(n,x+(a t) ¢ cos 6, v) do dv do
n n

n o
+IOH(ct—x) ec”*)‘ } (1.5737"_ @)(a,x+(a7t) ¢, v) do dv
n o
+IIH()C+CI— 1)) e‘j;“*l ](f%—@)(a,x—(a—t)c,v)dadu, (221)
where

Y:={(s, 0); (0<s<t,x—tccosfe(0,1))

<s<t,x—tccosf<0)

(l—
U
ccos @

v (t+
cc

x
<s<t,x—tccosf@>1);,
os 6

and H is the Heavyside function. Performing the change of variables
s> y:=x—tccos@+s(ccos@—¢&) and g - z:= x—tc cos O +a(c cos §—E&,)
in the first term of the right-hand side, and noticing that, on (Y xV) n

€

{Icos 6] > €}, |c cos 8 —¢&| > ¢ £, leads to

'[ g"¥(s, x—tc cos 0 +s(c cos 0 —&), v)
@ x¥)  {|cos 0] > €}

X e° _[; ) (g"—f™* (0, x—tc cos O+a(c cos 0—&,), vy) dvy dnds do dv

2 . ,
P f |g"lr (3, v) exclonr ' Grodndz gy, gy <
€c Jo,1)xv
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by Lemma 2.2. The other exponential terms in j|cosg|>€ I'(t, x, 0) dO can be
treated analogously. Hence,

j I'(t, x,0) d9<0i+cjf I(x—tccos 8, 0)do.
|cos 0] > € |

cos 0] > €, x—tccos B e (0, 1)

It follows from the last assumption on [, made in (1.12) that
(Lm g=c 1"(2, x, 0) dB) is bounded from above, hence weakly compact in
L'((0,T)x (0, 1)). Moreover, for § > 0,

(6,+fax)%ln(1+5f")

(1+5f”)(1+g7) |cos 6] > € (1+5fn)(1+f7)

1 n n n n
N s f ] f*n,dv*dco— f i f*n
I+of") 1401422 1+of") " 144

dv, do.

First,

/" jznd¢9+ S

S&
- S —dv, dw
L+ (1+2) 1+5f"I 144"

<%<[1”d0+j$f:du*dw>

is weakly compact in L'. It follows from the weak L' compactness of ( /™)
and (g") and the boundedness of Lcosm - 1" df that

gn
2 1" do
(1+6fn< Tt |cos 6] > € >>

is weakly compact in L'. Then, it classically follows from the weak com-
pactness of ( /") and the boundedness of &( /", "), that

L g S
S ; - dv, d
(o7 RPN )

is weakly compact in L'. Hence the sequence (F") is strongly compact
in L'((0,T)x (0, 1)). The same argument holds for proving that (G") is
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strongly compact in L'((0,7)x (0, 1)). Then (st‘gl>E I'(t, x, 0) dO), as
written in (2.21), is strongly compact in L', since (j g 7 dv) is strongly

compact in L' and (2, 0) — [ (F"+G")(s, x+(s—1) ¢ cos 0) ds is uniformly
bounded with respect to », ¢, x and 6 such that |cos 0] > €.

Lemma 2.4. The sequences (f”) and (g") belong to C([0,T],
L'((0, 1) xV)).

Proof of Lemma 2.4. The temporal regularity of (f”*) and (g") is
proven as in ref. 12, by using the weak L' compactness of ( f™), (g"),

<1+5f <<J “’*Lmﬂx’"”’H)g —fr[ 1o+ ocs, f)>>

and

<1 +1§g" <_<j d0+'[|cos¢9|>e r d0>gn+fnjln do+Q(g", g")>>.

3. THE PASSAGE TO THE LIMIT

Lemma 3.1. Let f, g and I be the weak limits in L' of subsequences
of (f™), (g") and (I") respectively. Then I satisfies the equations (1.5),
(1.7)-(1.9) in weak form.

Proof of Lemma 3.1. Let a test function u be given. It is straight-
forward that I satisfies (1.5), (1.7)—(1.8) in weak form, since up to a sub-
sequence, (| > ul"(t, x, 0) d@) converges to (oo c #I(2, x,0) df in L
weak x, and (] - T to F and G.

Let us prove that 'I satisfies (1 5) (1.7) and (1.9) in weak form. Let o >0
and a test function u be given. From

g

n n 1 n n 1 g"
" ek &y & _p S \mlts ko

1+ £ InK\1+&  1+L/) I'f"

1+

the weak L' compactness of (g”) and the bound on D,( f”, g", I") derived

in Lemma 2.1, it follows that (1 J’: L I") is weakly compact in L', so that
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there is B, >0 such that for any subset Z of (0,7)x(0,1) such
that|Z] < g,

J ) < —.
ZxV x {|cos 0] <€} l+f7 |,u|oo

By the averaging lemma and Egoroff’s theorem, for any y > 0 there is a set
Y, =(0,7)x(0, 1) such that |[Y,| <y, F is bounded on Y; and (f ﬁdu)
converges to F when n — + oo, uniformly with respect to (z, x) € Y;. Hence,
SY;X {leos bl <} FI<c. Using a decreasipg sequence (Y, ) with lim, , , . y, =0,
implies that jF I < c. And so, there is f, € (0, ), such that for any subset
Z of (0, T)x(0,1) with |Z] < §,,

o
[ FI<——.
Z x {|cos 0] <€} |,u|°o

Then,

U( f nI”—fI>,udtdxdvd0‘
1+

f(lf{,”_f>dv

Fu(I"—1I) dt dx df

S c
Yy, XV x {|cos ] <€}

I"udt dx dv db

-[Y/cgz x {|cos 0] <€}

+ L " vt dx dv a0+ FIudt dx db.

ﬂszx{lcosﬂl<e} 1+§ Yﬁzx{lcosH|<e}
The first term in the right-hand side tends to 0 when n— +o00, by the
uniform convergence with respect to (¢, x) e Yj, of j(ﬁ— f)dv to 0
when n — +o00. The second term tends to 0 when n— +"oo, since F is
bounded on Y and j (I"—1T) u do tends to 0 weakly in L'. The third and
fourth terms are smaller than «, uniformly with respect to n. And so, the

passage to the limit when # — + o0 in (2.4) can be performed. This ends the
proof of Lemma 3.1.

Lemma 3.2. Let p>0 be given. There are a constant ¢, >0 and a
subset 4, = (0, 1) x V" such that |4;| < p and

(f+2)*(t, x,v)<c,, aa. te(0,T), (x,v)ed,.
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Moreover, for any 6 > 0, there is a sequence (Y, ;) of subsets of (0, 1) xV
such that

meas{(¢, x+t£,v),t€(0,T), (x,v) €Y} s} <9,
and
(S"+g) (Lx0) <5 aa teOT), (xv)ek,,

Proof of Lemma 3.2. Adding (2.1) and (2.2) implies that

f*n+ g*,,>dv*dw
1+28 148

(e (e [ 5

S .
1_i_%,ﬁa?v*dco—l—g fS

lg* dv, dw = 0.

> (S48 +E S+ +f" [ S -
+

Hence, for (¢, x, v) such that (x, x+t&, x+T¢&) € (0, 1)3,
(fn+gn)# (t, X, U) < (fn+gn)# (T, X, 1)) ejng(f"+g”)(s,x+sé, vy) dvy dwds.

By the averaging lemma,
T
(x,v) > f fS(f"—Fg”)(s, x+s&, vy) dv, do ds
0

is strongly compact in L'((0, 1) x V). Hence, it is bounded in L*, uniformly
with respect to n, on the complementary A}, of some subset of (0, 1)xV
with measure smaller than 4. Consequently,

r f S(f"+g")(s, x+5E v)dv, dods<c,, aa. (x,0)ed,, (3.1)
0

and

(f"+g)* (1, x,0)<e(f"+g)* (T, x,v), aa. te(0,T), (x,v)ed,.
(3.2)

And so,

(f+2)f(t,x,v)<e'(f+8)*(T,x,v), aa. te(0,T), (x,v)ed,.
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For some Af, < (0, 1) x V' with complementary of measure smaller than £,
(f+2* (T, x,0)<c;, (x,v)€4d].
Hence, for A, = A} n A2, such that |45| < p,
(f+e*(t,x,v)<c, aa. te(0,T), (x,v)eA,.

The cases where x <0, (x+1&, x+TE) e (0,1)? and x> 1, (x+1&, x+TE)
€(0,1)*> can be treated analogously. The cases where x+&€ (0, 1),
x+TE>1 (resp. x+t£e€(0,1), x+TE¢ < 0) can be treated with a compari-
son with the outgoing values of f# at the boundary point 1 (resp. 0). The

existence of the sequence of sets (Y, ;) stated in Lemma 3.2 follows from
(3.3) and the inequality

f(f”+g”)“ (T, x,v)dxdv<c, aa. (x,v) st x+tEe(0,1).

This ends the proof of Lemma 3.2. Denote by yx, s the characteristic func-
tion of the set of characteristics

{(t, x+1&,0);t€(0,T), (x,v) €Y, 5}

Let p > 0 and J > 0 be fixed. The equations (2.1)—(2.2) satisfied by ( f”, g")
are first written in weak form for test functions y, ;¢, i.e.,

n¥, %
t, x,v)dxdv
f(x,v);(x+t§,v)e(0, XV (f Xn,(s(P)( )

(%, 0); (+ 1€, v) € (0, 1) XV, E> 0 &

= (f"#ﬁ,a(/’)(()v —ix,v)dxdu

' w09

+j§>0~[v—%f Ans Ds
1—

j (f"*xk 5(P)<0V—x,X,v>dxdv
(x,0); (x+1£,0) € (0, 1) xV,E<0 > é

+L<0 fotvl; fk s Z_(s

+j f <g,,<2n+ I"d0>
£>0 vag 1_|-g7 [cos 6] > €
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n #
L1 a0+0,. 17 ) tiuo

+ j < g ,,<27r+ I”d0>
£<0 Ov% 1-|—g7 [cos 0] > €

n #
1J+( 5| 17 d0+0,(f, f")) 1500

and an analogous equation for g”. Here, Q, denotes the approximation of
the Boltzmann collision operator used in Section 2. Since lim;_, w X
lim, ., ,, f"%.s =f, the limit of the first three lines when n —» +o0, then
0—-0is

[ (f*@)(t, x, v) dx db,
(x,0); (x+1t&,v) eV

X t 0
f fip(Ov—2,x,0 +f I f#—(p, and
(%, 0); (x+16,0) € (0, ) XV, E>0 & ¢>0Jov -2 Os

1—x t 0

f fifoOv——,x,v +f j f“—(p.

(%, 0); (x+28,0) € (0, 1) XV, E<0 & e<0 Jov 12 Os
The passage to the limit in

g S #
8 (ons(1ap)\——L—(1a6) 4
L§>0,Ov—%<s<t}u{§<0,0v1;;<s<t} <1+i< T j > 1+f7J‘ > Xn o9

and in

, 0.(f" ¥ xiso

J‘{¢>0,0v—%<s<t}u{é<0,0vl_?x<s<

are performed in Lemma 3.3, and in Lemmas 3.4-3.6 respectively.

Lemma 3.3. For any bounded function ¢, the sequence

nog
<I 1f = 25 so(t, x,0) I'(t, x+ &, 0) dO dt dx dv),
[cosf]<e | 4+

n

nog
(resp. <L g_ X so(t, x,v) I'(¢, x+ t&, 0) df dt dx dv),

cos 0] <e 1-|-g7



Evolution of a Gas in a Radiation Field 615

n %
<f I" vt sottx, U)I”(t,x+té,0)d0dtdxdu>,
|cos ] > € 1+f— ’

< f ; X,, s0(t, x, ) I'(t, x+1&, 0) dO dt dx dv>> tends to
|cos ] > € 1 + &
f FEo(t, x, v) I(t, x+1&, 6) dO dt dx dv,
|cos 6] <€
<resp. go(t, x,v) I(t, x+1t&,0) db dt dx dv,
|cos 6| <e

f FEo(t, x, v) I(t, x+1&, 0) dO dt dx dv,

|cos ] > €

J‘ g#¢(ta X, U) I(t, x+t£, 0) d0 dt dde)
|cos 0] > €

when 7 tends to infinity.

Proof of Lemma 3.3. The proof of the first statement of the lemma
is similar to the last part of the proof of Lemma 3.1, after noticing that for
d > 0 fixed, the averaging lemma applies to - ,,, Xn s- Indeed, ( f,,) and

fn An, o < g” < >
0,+¢0, s = A\ 2t I"do
(t é )1+f7xa5 (1+f7)2 l_i_g7 |cos 6] > €

fn n n n
— 7 gfl do+0,(f" 1)
are weakly compact in L'. The proof of

lim lim < ) ,,)(,,,;) o(t, x, v) I'(t, x+t&, 0) dt dx dv df
050 n—> 4o Jcosb|>e 1+f

= fro(t, x, v) I(t, x+1&, 0) dt dx dv dO

|cos 0] > €

then follows from the weak * convergence in L* of jlccs o= 1"(2, x+1&) dO
t0 fcoso> e 1(2, x+1&) dO when n — + 0.

The passage to the limit when » — + oo, then J — 0 will now be per-
formed in the Boltzmann collision operators. Let p >0 be given. Test
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functions with support outside of (0,7)x A4, will first be considered,
following the lines of the proof of the passage to the limit in ref. 9. Then
this restriction on the support of the test function will be removed.

Lemma 3.4. Let p> 0 be given. For any test function ¢ defined in
Definition 1.1 and such that ¢ vanishes on (0, 7') x 45,

f

lim lim JS(f 1 s)F (2, x, v) (t X+, vy) dvy do dt dx dv

050 no+

= [ S(r*0)(t, x, v) 11, x+18, v,) doy doo dt dx db.

Proof of Lemma 3.4. Denote by g; =wlim,_, ,, f"x,; in L'. For
J > 0 fixed, let us first prove that

n

lim jS(f"X”)# o(t, x, v) i _(t, x+1&, v,) dt dx dv dv,

= [ g2t x,0) f(t, x+1&, v,) de dx do do.
Then

lim j S(gkp)(t, x, v) f(t, x+1&, vy) dt dx dv dv,
-0

= j S(f*)(2, x, v) f(t, x+1&, v.) dt dx dv dv,,

since the family (g;) increasingly converges to f in L', and

(gﬁgo)(l, X, U) f(ts X+té, U*) < (f#(p)(ts X, U) f(t3 x+té’ U*),

which is integrable, since f*g is bounded.

] | Sot 1) A 7 (15 1800 =g (4 0418, 00)) do do it dxdo

<A4,+B,+C,
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where

n

J(p(t X, V(" s — 85)F (2, x, U)Slf- - (t, x+t&, vy) dvy doo dt dx dv|,

= Ugg(ﬂs(f"—f)(t, x+1t&, v,) dv, do dt dx dv|,

(f"?
n(1+2

Then, A, tends to zero when » tends to infinity, since ¢(f"x, s —g;)* con-
verges to zero in L* weak x and (j S li—L (t, x+1¢&, vy) dv, dw) converges

C, f gioS )(z x+1&, v,) dv doo dt dx dv.

strongly in L' on the support of ¢. Moreover, lim, _, , ., B, =0, since g¢ is
bounded and (j S(f"—=f)(t, x+1&, vy) dvy dw) tends to zero in L'((0, T) x
(0, 1) x V) by the averaging lemma. Finally,

m\2
cjs (" (1, X +1&, v,) dvy do> dt dx dv

C, <
n(1+ i)

ny2
e o U
St x+1E v )<L n(l +L)

(UM )2

+cj
Ut x+1& vy)> L n(l +

(¢, x+1&, vy) dv, do dt dx dv
) —— (¢, x+1t&, v,) dv, do dt dx dv

L
<c—+c

j (e, x+1E, v,) dv, dt dx dv,
n [, x+1&,v,)>L

which tends to zero when n — + oo, by first choosing L large enough so
that j prxrte o>z J (8 X+, vy) doy dt dx dv be small uniformly with
respect to n, then n large enough.

Denote by
fn

= (¢, x, vy) dvy dow.
7

o, (f" I,

Lemma 3.5. Let p >0 be given. For any test function ¢ defined in
Definition 1.1 and such that ¢ vanishes on (0, 7') x 45,

im Lim | Q7 (f" f")* xi s9(t, x, v) dt dx dv

050 n—>+w

> f O*(f, £)? o(t, x, v) dvy do dt dx dv.
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Proof of Lemma 3.5.
[ Qs 1Y% 2o dt dx dv

_jsx,,é(z X, 0) o(t, X —t&,v') {r (1, X, v)

X ff,, (¢, X, vy) dt dX dv dv, dw

> [ S5t X,0) o8, X 18, v)( i xna,>(z X, v)
><<f—,,)(n 5;>(t, X, ve) dt dX dv dv, dw
1+ 47"
=IS(1 _Xn,é(tﬁ X: U/)) (p(ta X_téla v/)<$ Xn,&;)(ts Xa U)
/" 1
X| —— xnst |(t, X, v,) dt dX dv dv, dow
1+ 27"

+[ St x—1¢, v)< if xn53>(t X, v)

X <f_n Xn 5;)(1‘5 X, U*) dtdX dv dl)* dw.
1+

Then,

J S0 =nstt X ) ot X =18 (Lt )t X

X< f ana:ﬁ)(t,X,v*)dthdvdv*dw
1+ 47"

< ij (1= 70 5(t, X, ")) dt dX dv dv, do> < 5",
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Moreover, analogously to the proof of Lemma 3.4,

n

im [ 500,18, 0)({ Lt 0.2

n— +0oo

X<f—n Xn 5§>(l‘, X, v,) dt dX dv dv, dw
1+

= J‘ S¢(t5 X_té,5 U,) gé(ta Xa U) g5(t3 X’ U*) dt dX dU dU* dwa
which tends to

jS(p(t, X—t&,v) f(t, X,v) f(t, X, vy) dt dX dv dv, dw

= [ Q*(f. 1) ot, x, v) dt dx b,
when ¢ tends to 0.

Lemma 3.6.

m Tm [ QF(f", f")* 1k oo di dxdo< [ Q*(f, f)? p dt dx dv.

050 n->+w

Proof of Lemma 3.6. Let >0 be given. It follows from the
averaging lemma that there is a subset X, of (0,7)x (0, 1)xV, with
|X ;| <n, such that

JS(f"—f)(f, X,v) o(t, X —t&,v") dv, dww — 0 when #n-— +o0,
(3.3)

uniformly with respect to (¢, X, v) € X,, and

ij(t, X, vy) (8, X —t&',0") dvy dw is bounded in X,. (3.9
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Then,
[ Qi 17y 4t s dt dx av
< f Sf(t, X, 0') f7(t, X, 0%) %, 5(2, X, 0) (2, X —1&, v) dt dX dv dv, dw

< S, X, v f7(1, X, vi)

(t, X, v, v, 0); (1, X, 0") € X}y

x@(t, X —t&, v) dt dX dv dv, do

+| ST X, 0) £7(8 X, 04) 2,58 X, 0)
(t, X, v, vy, w); (l,X,v’)er

X @(t, X —t&, v) dt dX dv dv, dw

= S, X,v) f(t, X, vy)

(t, X, v, vy, @); (1, X, 0) € X
xX@(t, X —t&', v") dt dX dv dv, dw
+[ ST X, 0') £7(E X, 04) 2 58, X, 1)
(2, X, v, vy, @); (t,X,v’)eX; ’

x@(t, X —t&, v) dt dX dv dv, do.

By (3.3)-(3.4), analogously to the proof of Lemma 3.4,

lim St X, ) f(t, X, vi)

n— 400 J(t, X, 0, 04, 0); (1, X, 0) € Xy

x@(t, X —t&', v'") dt dX dv dv, do

=J Sf(t, X,v) f(t, X, vy) @(t, X —t&', v") dt dX dv dv, do.
X’I

Moreover, for j = 2,

Sf(, X, v") [7(t, X, v4) 2,5(2, X, 0)

J\(t,)(,v,v,,!,w);(t,X,u')eX;

x@(t, X —t&, v) dt dX dv dv, dw
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<J S(ann,é)(tﬂ X’ U) fn(ta X’ U*)

(5, X, v, vy, ); (8, X, V') € X,

x (1, X —t&, v) dt dX dv dv, da;+%j

<9 SF(t, X, vy) dt dX dv dv, do +%

S
5 (t,X,v,u*,cu);(t,X,v’)eX; n]
cj c

<—=o0 +—

=0 () In j

And so, Lemma 3.6 holds since, given €> 0, one can choose j big enough,
then o(7) < 2"5 , finally § small enough, so that £ o(y) +;% - < €holds.

End of the Passage to the Limit. It remains to pass to the limit
when p tends to zero. Let ¢ be a test function as defined in Definition 1.1.
Let t € (0, T) be given and

={(x,v)eA f>0andj Q(f f)#¢(sxv)ds>o}

u{(x,u)eA 5<0andj Q(f f)#(sxv)ds>o}

Then the iterated form enounced in Definition 1.1 holds for f@y, r)x E,> SO
that

1z, (%, v)(fot (s, x, ) ds> dx dv
v-3

J(x, v); (x+12&,v) e (0, )XV, E>0

t
+j xe (x, ) f h¥*(s, x, v) ds | dx dv
(x, v); (x+1&,0) e (0, )xV,E<0 " oalzx

¢

(fq)xEﬂ)#(oV 2 v)dx o

J\()c, v); (x+1&,0) e (0,1)xV, >0

(f(prﬂ)*(oV“Tx, . v>dx v

J‘(x, v); (x+1&0)e (0, 1)xV, <0

0
_J J e, +2ng)(E 1% (s x, v) ds dx dv
(e o) (e +18,0) €0, 1) xV, £>0 Jov % s

4 0
_J J : <fXE —-+2ngxe, @ ) (s, x, v) ds dx dv.
(x,0); (x+2&,0) € (0, ) xV,E<0 JOA—Z ’ ﬂ

: (3.5)
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The left-hand side of (3.6) is non negative by definition of E,, increasing
when p decreases to zero, and equal to the right-hand side that has a limit
when p tends to zero. And so, the iterated form holds for ¢y, where

Ez{(x, v); >0 and jT h¥(s, x, v) ds>o}
Ov—g

U {(x, v); £ <0and jmf h*(s, x, v) ds > 0}.
OV?X

The same argument can be used for @yz. And so, the iterated form holds

for

Sfo(xe+ xe) = fo. Analogously, the iterated form holds for gy, where

Y is a test function for g as defined in Definition 1.1. This ends the proof of
Theorem 1.1.
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